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1. BACKGROUND
Chemical structure recognition software aims to extract raster images of 2D chemical structure diagrams
and convert them into a standard, machine readable chemical file format. Such software, so called
chemical OCR can be used for mining chemical entities appeared in scientific literature. Since traditional
text based mining methods haven�’t attempt to utilize image data in documents yet, chemical OCR
software will pave a new way for the development of chemical literature mining [1, 2].

This year, the TREC Chemical IR campaign has launched a new topic called �“Image to Structure (I2S) task�”
where participants are asked to process given images and recognize chemical structures in the images.
While the immediate objective of this task would be to evaluate the existing chemical OCR software, it
ultimately aims to create a platform to see how information in image data can be incorporated with
existing text mining approach to facilitate further development of chemical IR techniques.

We developed a chemical OCR software, ChemReader which specifically tailored to a chemical database
annotation scheme [3, 4]. The recognition algorithms are optimized to achieve high accuracy and robust
performance sufficient for fully automated processing of scientific articles. In our previous reports,
ChemReader was able to outperform other chemical OCR software on several sets of sample images
from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular
substructure patterns. Since then, other existing tools have been continuously updated, and new
chemical OCR tools also have been released. Thus this task is a good opportunity for chemical OCR
developers to evaluate their algorithms against common image set, and see strengths and weaknesses
of their own comparing them to others.

Here we report how we performed the I2S task during May July, 2011. We first briefly present the
recognition algorithms in ChemReader, followed by the updates during the training. Then, we will show
the results of its evaluation on test set and discuss major errors of ChemReader on the test. Most
importantly, on the basis of the lessons learned from this task, we will discuss issues and insights in the
chemical OCR development.



2. CHEMICAL STRUCTURE RECOGNITION TOOL ChemReader

The algorithms of our chemical OCR tool, ChemReader, were already reported in our previous paper [4].
Since then, the overall structure of the algorithm has been changed with additional steps and enhanced
algorithms. The latest version of ChemReader, consists of the following steps:

1. Identification of a cluster of pixels that contain a chemical structure
Assuming there is a single chemical structure diagram in given image, ChemReader collects set
of pixels that are likely to be part of chemical structure by employing region growing method.
First of all, pixels of input image are clustered based on pixel connectivity. After this pixel based
segmentation, it picks the largest connected component as initial seed, and examines
neighboring connected components to determine whether neighbor components should be
added to the region of chemical structure. This process is iterated until there is no feasible
neighbor to be added. The decision is made based on a certain distance threshold. In general,
the distance threshold is determined by considering distance between the initial seed and its
nearest neighbor. Components that not are included in the region will not be processed in the
next steps.

2. Preprocessing: re sizing, de noising, and bond length estimation
It is often necessary to resize and de noise the input image so that the chemical structure
diagram within the input image has optimally adjusted bond lengths and character sizes to
ChemReader�’s recognition algorithms. With the first run of line detection as explained below,
the length of single bonds is estimated. If the estimated bond length is shorter than a certain
threshold (currently 25 pixel), the image is resized to ChemReader�’s preferred size.

3. Identification of Text(character)
Connected components that have similar heights and areas are labeled as characters. The most
popular area/height combination is assumed to be those of text components. In order to
distinguish the small isolated lines or circles representing bonds from the text components, the
relative location and horizontal/vertical run profile of each component are also checked.

4. Identification of circles within benzene rings
Among non character components, if pixels of components are distributed with almost same
distances from the center of the component, those are regarded as circles for representing
aromatic bonds.

5. Hatched bond detection
From this point, we can expect that residual pixels are part of normal, wedge or hatched bonds.
Among residual connected components, ChemReader attempts to find short line segments
having uniform length and interval, as well as being collinear in the direction perpendicular to



the direction of the short line segments. Components whose diagonal length is shorter than the
estimated single bond length can be candidate segments for hatched bonds.

6. Skeletonization
Left over pixels are assembled together in a bitmap space and then skeletonized. This step
makes the ring structure detection and line detection algorithms run faster as well as minimizes
the effect of variation in line thickness on line detection algorithm.

7. Hexagonal or Pentagonal ring structure detection
The pentagonal and hexagonal ring structures are directly identified using Generalized Hough
Transformation (GHT). This step is specially designed for low resolution images because line
detection algorithm often fails to detect all the lines of ring structure correctly. The direct
extraction of ring structure helps to construct the topology of small organic molecules more
accurately and efficiently.

8. Line detection
ChemReader employs a modified Hough Transformation (HT) and a corner detection algorithm
for extracting lines. While the HT provides information about the location and the direction of
detectable lines, the corner detection algorithm allows determining the end points of them.

9. Filtering out collected lines
Sometimes text components or noise components are not clearly identified before entering the
line detection step. So short line segments are filtered out and examined again in the next step.

10. Identification of Text(character) over {unidentified pixels & identified pixels in step 3}
Entering this step, there are unidentified small fragments including filtered line segments or left
over pixels. Such fragments are examined again whether there are text components. From
original image, pixels corresponding to those small components are collected. Those pixels are
assembled with pixels of identified text components in an empty bitmap space. From this image,
text components are detected and finally confirmed. In this manner, characters that are glued to
graphic components can be separated successfully.

11. Character recognition
Text components are sent to character recognition engine. ChemReader runs two different
character recognition engines: GOCR open source library and its own engine. While GOCR is
based on template matching of character features, the latter engine is based on the calculation
of Euclidean distance between pixels of the character and of the character models of several
fonts. Confidence scores for candidate characters is sum of two confidence scores given by
those two engines. Total 10 candidate characters are assigned to each character.



12. Chemical spell checker
Given candidate characters and their confidence scores, the chemical spell checker tries to find
a most likely chemical word based on a predefined, frequently used chemical symbol table
which contains 770 chemical abbreviations and fundamental chemical rules on molecular
formula containing nonmetal and hydrogen atoms.

13. Repeat step 8 9 over unidentified pixels
Among unidentified components, there can be lines to be detected. So step 8 and 9 are
repeated over left over pixels. With less strict line filtering criteria, every possible line segments
are detected. That is, even if a line segment is significantly shorter than the estimated single
bond length, ChemReader accepts it once the short line can be arranged together with
previously detected bonds.

14. Merging or breaking lines
Often one bond is fragmentized by multiple line segments. So if the end points of two lines are
very close and their relative angle is about 180 degree, they need to be merged into one line
segment. In contrast, if there should be junction nodes in the middle of a line segment, the line
segment is split into multiple segments.

15. Graph construction
First, every end point of the identified bonds and center points of the identified chemical
symbols are labeled as a node. Next, among these nodes, the ones located within a certain
distance are merged into a single node.

16. Identification of connected components in the graph data structure
Since it is assumed that there is only one chemical structure in the input image, we need to pick
only one connected component of the constructed graph. If there are more than one connected
component, ChemReader selects the largest component and discard other components.

17. Output the connection table



3. TREC CHEM 2011 Image2Structure Task

3.1 Image sets

Two sets of images, training set and test set were given for the I2S Task. Each set consists of 1000
images in TIF format, each of which has only one chemical structure. According to the TREC CHEM 2011
guideline, the set of images and reference structure have been chosen to satisfy the following criteria:

 No "M..." records except for "M END" this gets rid of brackets (polymers), as well as charges and
isotopes and other less common things

 Only one fragment in connection table
 The only allowed elements are C N O S F Cl Br I P and H; no r groups
 No "wavy" bonds
 Valid InChI can be created
 Larger than 6 atoms
 Smaller than molecular weight 1000

3.2 Evaluation
�“The evaluation is done automatically based on an existing set of corresponding SD files for each image
using a structure based comparison algorithm (exact matching).�”

In the training, we used graph matching algorithm implemented in ChemAxon�’s JChem toolkits
(http://www.chemaxon.com/jchem/intro/index.html). We also calculated Tanimoto similarity of
PubChem fingerprints between output structures and of given reference structures.

3.3 Small training set

We selected 100 images from 1000 training images. Because all images in training set look very similar in
terms of the image resolution and the complexity of chemical structure, we decided to use a small set of
training images for quick evaluation and error analysis.

3.4 Training
We performed three rounds of major trainings. In each round, we categorized main types of errors and
prioritized them according to the frequency of occurrence.

Figure 1 shows ChemReader�’s progress in the training. Each round of the training could increase the
accuracy by ~15%. The first trial with untrained ChemReader gave us 57% accuracy. Most of chemical
structures in the training set have uniform bond length, bond thickness and character size. Even we
could hardly see unconventional notations in the training set. So we decided to remove unnecessary
heuristic algorithms in ChemReader which are actually required to recognize chemical structure
diagrams with low resolution, high noise level, and/or unconventional notations. Followings are major
changes that were made to ChemReader during the training.



Figure 1. Training progress of ChemReader

 Deactivated algorithms for I2S task
o Re sizing and De noising in step 2
o Isolating subscripts which are likely glued to neighbor normal characters in step 11
o Character type classification {upper, lower, subscript, superscript}
o Merging lines in step 14

 Limit possible characters: { C N O S F I B r l P H h M e E t 1 2 3 4 5 6 7 8 9 ( ) }

 Set parameters to conservative values
o Minimum number of line segments representing hatched bond = 4
o Minimum number of characters to estimate character height = 1

Possible character height = pixels

 Update chemical dictionary
Only a few chemical abbreviations such as �“Me�”, �“Ph�” or �“Et�” appear in the training set. Most of
symbols in the original dictionary are not necessary for this task. So we replaced the original
dictionary with a light version of dictionary including abbreviated symbols appeared in the
training set.
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 Loss of precision due to type conversion
In ChemReader, type conversions were frequently occurred. During the training, we realized
that several repeated conversions could make significant differences in the result. For example,
object translation/rotation in bitmap space or transformation between Hough space and bitmap
space. By using a round function, we could minimize the effect of the loss of precision due to
type conversion.

 Fragmentized characters
In step 3, we assumed that each character corresponds to a connected component. However,
we noticed that some characters in training set are fragmentized. In order to isolate such
fragmentized characters correctly, we cluster pixels by region growing approach. Thus a
clustered segment has multiple connected components.

4. TEST RESULT
We submitted two sets of outputs for different parameter setting. Test I and Test II in Table 1 shows
evaluation results for our submission. Both are significantly different from the estimated accuracy in the
final training. There were two main causes of the accuracy decrease as follows:

 Stereo chemistry
As many chemical structures in image set has unidentified bond stereo types, we set
ChemReader to ignore bond stereo type. In addition, the ChemAxon�’s graph matching algorithm
used in our training doesn�’t take bond stereo types into account. However, the evaluation
method used in the actual test requires exact bond stereo type matching. We found that the
omission of bond stereo types could decrease the accuracy by ~10%.

 A bug in corner detection code
In addition to stereo chemistry issue, it turns out that our small training set is an inappropriate
sample. In fact, our corner detection code had a bug which causes to fail finding the end point of
lines touching the boundary of the image. Unfortunately, we couldn�’t see the bug during the
training because all chemical structures in the small training set are placed in the middle of
image with a certain margin space. This bug also lowered the test accuracy by ~10%.

Since two issues above are not really related to algorithmic and/or parametric tunings, we re ran
ChemReader for test set after resolving above two issues in order to evaluate actual ChemReader�’s
capability. Parameter values used in Test I was applied. For fair comparison, instead of our evaluation
tool used in the training, we employed the evaluation tool used in the actual test. Test III in Table 1
shows the result. The ratio of correct outputs is 93% (930/1000) which is comparable to the final
training accuracy. Even though our submitted result show very low accuracy compared to other
participants, it is noted that Test III�’s accuracy is comparable to the highest accuracy (Figure 2).



Table 1. Image2Structure test result of ChemReader

# of correct outputs Avg. Tanimoto similarity

Test I 691 0.9769

Test II 689 0.9823

Test III 930 0.9913

5. Error analysis
We randomly selected 20 samples from Test III result, and categorized error type. Table 2 shows major
recognition errors and their examples occurred in Test III. The most frequent error type is wrongly
merged nodes which usually happen when two nodes are too close to be distinguished by a distance
threshold. Secondly, while filtering out short line segments, we often miss normal bonds in structures.
However, we believe that these two types of errors can be avoided when some chemical intelligence is
incorporated into node merging and line filtering steps.

A nonstandard representation of chemical structures is one of factors causing recognition errors. For
example, noise symbols which are not part of chemical structures would confuse ChemReader. Often
wedged or hatched bonds drawn with a different style gives another challenge to chemical structure
recognition algorithms. Also, current version of ChemReader is not capable to interpret 3D crossing
bonds in structures. This might be another ability to be developed in the next version of ChemReader.

Figure 2. 2011 TREC CHEM Image2Structure task result
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6. Conclusion
We had the first round of the I2S task. Because of the simple omission of the stereo chemistry in the
output structures and inappropriate training samples, ChemReader scored lower accuracy than
expected. However, after resolving the stereo bond issue and a bug in the corner detection,
ChemReader could obtain 93% accuracy. The error analysis on the final test indicates that ChemReader
needs to incorporate more chemical intelligence in its algorithms.

Table 2. Error types, frequency and examples in Test III (20 samples)

Error type Frequency Examples in the test set

Wrongly merged nodes 6 (30%)

Missed bonds 4 (20%)

Incorrect bond stereo type 3 (15%)

3D crossing bonds 3 (15%)

Noise symbols around structure 2 (10%)

Etc. 2 (10%)
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